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An alternative type of nonlinear resonance is reported. Its paradoxical peculiarity is demonstrated: an exact
resonance between an external periodic field and a free oscillation at some energy is not necessarily needed,
unlike the conventional nonlinear resonance. Examples of physical systems are given.
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The concept of nonlinear resonance (NR) is used broadly
in physics (see [1-3] and references therein). In particular,
for the case of a one-dimensional nonlinear oscillator subject
to a periodic field, it means that the response of the oscillator
to a weak field can be strongly nonlinear (i.e., constrained
vibrations can have a large amplitude) if there is an energy
E, at which the eigenfrequency is exactly equal to the field
frequency: w(E,)=w; [Fig. 1(a)]. In this case, free vibra-
tions of the oscillator with the energy E=E, are coherent
with field oscillations. Correspondingly, if their phases coin-
cide or are shifted for 7 then the oscillator does not change
its energy, on average. Rigorous analysis [1] shows that, in
the general case, slow small oscillations of the phase shift
and of the energy take place. They are described with the
motion in the cosine potential of an auxiliary particle with
the phase shift as the coordinate, the difference between the
action and its resonant value as the momentum and the mass
M=[dw(E,)/dE,]”!. A similar description of NR can be
done for the case of many-dimensional motion [1-3] (sev-
eral weakly interacting oscillatory degrees of freedom).

Nonlinear resonance plays a basic role in the phenomenon
of dynamical stochasticity in Hamiltonian systems: the ac-
tion of quick oscillations (which are omitted in the above-
mentioned potential description) onto slow motion near the
separatrix gives rise to the effective randomization of motion
[1-3].

In this work, an alternative type of nonlinear resonance
which takes place for a broad class of oscillatory systems is
reported. One of its most intriguing and paradoxical features
is demonstrated: at some conditions, the nonlinear resonance
(i.e., a strong nonlinear response to a weak periodic field)
can take place even in the absence of the exact resonance
between an external field and free oscillations.

We shall consider the nonlinear oscillator with the depen-
dence of eigenfrequency on energy w(E) possessing either a
maximum or a minimum [see, e.g., Fig. 1(b)]. Models of this
type can describe superconducting quantum interference de-
vices (SQUID’s) [4,5] [corresponding potentials are of the
type U(g)=cosq+Il(g—qo)’], electric oscillating circuits
with a battery [6,7], local and resonant vibrations in certain
doped crystals [8] subject to a constant homogeneous field
[7] [corresponding potentials are like U(q)=q*+q*+Aq],
polymeric molecules [9], and others. Such models were in-
vestigated intensively in the past few years because of in-
teresting fluctuational phenomena arising due to the small
dispersion of eigenfrequency near the extremum: zero-

1063-651X/94/50(1)/44(3)/$06.00 50

dispersion peaks [5,9—11], noise-induced spectral narrowing
[7], zero-dispersion stochastic resonance [12,13].

If the periodic field acts on the oscillator then its motion is
described with such dynamic equations for the coordinate g
and momentum p:

dp/dt=—dU/dq+h cos(wst), dqldi=p (1)

(we consider the system without friction in order to empha-
size the main effect and to simplify its demonstration; the
presence of a weak friction does not prevent NR from taking
place).

Using the canonical transformation to the variables of ac-
tion I and phase ¢ [14], Eq. (1) can be written after some
identical transformations [9] (cf. also [3]) as the following:

dl/dt=w"'(E)ph cos(w/t),

(2)
dy/dt=w(E)— w(E)qgh cos(wst),
where g=43q/JE,
g=22 q,(E)cos(ny),
n=0
p=—2w(E) 2 nq,(E)sin(ny), 3)

n=0

E
E=p*/2+U(q), 1=f dE/o(E).
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FIG. 1. Examples of a dependence of eigenfrequency on energy
(solid lines): (a) monotonic, (b) nonmonotonic, and corresponding
high-energy stationary states. Dotted lines correspond to functions
ws*hdq,/dl.

R44 © 1994 The American Physical Society



RAPID COMMUNICATIONS

50 NONLINEAR RESONANCE FOR THE OSCILLATOR WITHA ... R45

Let the region of energies in which |w(E)— ws|<wf ex-
ist. Then in this region, the so called slow phase
y=y— wyt changes slowly in the scale of t~wf"1 and we
may average Egs. (2) over high-frequency oscillations [15]
that results in

dl/dt=—gq,h siny,

- - 4
dyldt=w—ws—(dq,/dl)h cosy. @

Let us find the stationary states for the system (4). T
obtained from the first equation: it is equal to either 0 or 7.
I should be found from

w(E(Ist))_wf= ih[d‘h(E(Ist))/dlsl]7 &)

where “+”’ corresponds to Ye=0 and “—” corresponds to
Yg=.

In the case of a conventional NR [see Fig. 1(a)] when the
field frequency has the resonant eigenfrequency at some en-
ergy E,, w(E,)=w;, and the field amplitude is small
enough, there are two stationary states with the high energy
(i.e., with E~E))

0, 1$=1,+h(dq,/dD)/(dw/dl)|;

(1) _
Vs m, IP=I,~h(dg/dD)/(dw/d)|;

(6)
1,=I(E,)

(just these states correspond to the NR while a low-value
root of Egs. (5) [see Fig. 1(a)] corresponds to small-
amplitude vibrations {15], i.e., to the linear response which is
not considered in the frame of a nonlinear resonance).

But we are interested in the different case: when the de-
pendence of eigenfrequency on energy possesses either a
maximum or a minimum while the field frequency does not
have the resonant frequency among eigenfrequencies al-
though it is close to the extremal one [see Fig. 1(b)]. In this
case, there are, as a rule, two high-energy stationary states
both of which have just the same phase [16]. The analysis of
the linearized dynamic equations shows that, at small %, a
stationary state is stable if

sgn[(dw/dE)(dq}/dE)(w—w;)]>0 )

and it is unstable at the opposite sign. That is, there are one
stable and one unstable state in the majority of cases.

It could seem very strange that the stationary state with a
large amplitude of vibrations exists notwithstanding that the
difference between phases of the field and of any free vibra-
tion grows with time. But the point is that oscillations of the
momentum caused by the field give rise to amplitude-
modulated oscillations of the phase which can result in the
compensation for the growth of the phase shift between the
field and free vibrations [mathematically, it is expressed with
the last term in the right hand part of the second equation
@]

The difference between the conventional NR and the case
discussed is not restricted to the different behavior at the
absence of resonance between the field and free vibrations.
Even when the resonant eigenfrequency exists but is close to
the extremal eigenfrequency, the dynamics in the nonlinear

resonance is completely different from the conventional NR.
Unlike the latter case, the motion is not potential although
still Hamiltonian:

H(, )= f dl(w— w;)—hgq,cosy. (8)

The structure of the stochastic layer near the separatrix also
is substantially different from the potential case.

We shall illustrate the aforesaid with an example. Let us
consider the oscillator with the potential

U(q)=q%*2+q*/4+Aq. 9

Such a model describes electric oscillating circuits with a
battery [6,7], local and resonant vibrations in certain doped
crystals [8] subject to a constant homogeneous field [7]. At
|A|>A.=8/(7)%2, the function w(E) possesses a minimum
[7] like w(E) shown in Fig. 1(b).

Let the field frequency coincide with the minimal eigen-
frequency. Then allowing for a parabolic shape of the mini-
mum, we obtain

- 0= "I%/2,
where

w"=d’w(E,)/dE%>0,

. : (10)
I=I-1,, |I|<I,.
Correspondingly the Hamiltonian is
H=w"I?/6—hq,cos(). (11)

If the nonlinearity is weak for actual energies (i.e.,
0<|A—A <A,) then q,~(I/2)"? at I~<I,=I(E,,). The
dependence q(E) is more complicated for a strongly non-
linear oscillator but, in any case, dq;/dI>0. Allowing for
this and Egs. (5) and (10), we can find with an accuracy to
the lowest power of /4 the stationary states:
U4=0, I4==(2hq;/0")'?,

(12)

q1=dq,(I,))/dl,,,

where “+” corresponds to the stable states while ¢ —"" cor-
responds to the unstable states as follows from (7).
Substituting I, of (12) corresponding to the unstable state
into (11), we obtain the value of the energy for the motion
along the separatrix and, thus, the equation of the separatrix:

@"PP/6+h{q,,[1—cos($)]—q; Icos()}
=(hq})¥*2(2/0")"¥3, (13)

where g,,,=q(I,,) and all powers of A higher than 432 are
omitted.

The typical picture of trajectories including the separatrix
is shown in Fig. 2(b). It is seen from the comparison with
Fig. 2(a) that it differs very much from the case of the con-
ventional NR.

As concerns the stochastic layer near the separatrix, we
have not enough room here to present its detailed rigorous
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FIG. 2. Typical trajectories: (a) in the conventional NR; (b) in
the zero-dispersion NR. Separatrixes are drawn by thicker lines.
Stable states are indicated by dots.

analysis which will be done elsewhere [17]. We only notice
here that, although the type of separatrix mapping is similar
to the one for the conventional case, the coefficients which
determine the width of the layer are different: in the asymp-
totic limit of a weak field, the layer is much narrower than in
the conventional case. Besides this, the layer is not homoge-
neous unlike the conventional case: the width of the layer
inside the separatrix loop [see Fig. 2(b)] is much narrower
than outside it.

Thus for the discussed type of NR the behavior of the
system differs very much from the conventional case. There-
fore we propose to call the phenomenon with the special
term the following: zero-dispersion nonlinear resonance
(ZDNR), in analogy with the zero-dispersion peaks [5,9—-11]
and the zero-dispersion stochastic resonance [12,13], because
the peculiarity of the phenomenon is determined just with the

equality of the eigenfrequency dispersion in the extremum to
zero, dw(E ,,)/dE,,=0.

Let me conclude with several comments.

First, the phenomenon could be generalized for the case
of many-dimensional motion when separate weakly interact-
ing oscillatory degrees of freedom are characterized with
minima and maxima of the dependences of partial eigenfre-
quencies on corresponding partial energies and there is not
an exact resonance of the first order for partial eigenfrequen-
cies. It should not be confused with a nonlinear resonance in
so called intrinsically degenerate systems [18,19] (see also
[1-3] and references therein) for which, in contrast to the
conventional case, the resonance condition is satisfied in the
whole energy space rather than in one point only.

Secondly, the phenomenon is not restricted with the para-
bolic minimum and maximum type of dependence of eigen-
frequency on energy: any kind of nonmonotonicity and the
inflection point as well results in completely different dy-
namics in comparison with the conventional nonlinear reso-
nance.

Third, we expect that the most interesting applications of
the zero-dispersion nonlinear resonance should be in
SQUID’s.

In summary, the theoretical prediction and the general de-
scription of the present type of nonlinear resonance have
been reported. One of its paradoxical manifestations, the
strong response of the oscillator to a weak periodic field at
the absence of an exact resonance between the field and free
oscillations, is demonstrated. The physical reason for the lat-
ter is the additional phase shift occurring due to the rapid
oscillations of the momentum caused by the field.
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